Irrotational Eigenvalues of Natural Rotation Matrices
Donald R. Burleson, Ph.D.
Copyright © 2020 by Donald R. Burleson. All rights reserved.
As described in my previous research articles, if A is a diagonalizable nonsingular (and therefore
semi-invertible) matrix, and if
is any eigenvalue of A, the natural rotation matrix
associated with this eigenvalue is
motivated by the fact that if we designate the matrix
to be the “associated
multiplication matrix” for a complex number x + yi, then given
and the associated
eigenvalue
of the principal semi-inverse of A, the
associated multiplication matrix for this latter eigenvalue is the natural rotation matrix indicated,
the exponential coefficient and the absolute value (or modulus) bars arising from the general
case where the eigenvalue
is a not-necessarily-real complex number.
We may routinely determine the eigenvalues of the natural rotation matrix
as follows:
the zeros of which are
so that by Euler’s Formula we have shown that:
LEMMA: For a diagonalizable nonsingular (and thus semi-invertible) matrix A, one of whose
eigenvalues is
, the eigenvalues of the natural rotation matrix
generated by this
eigenvalue are
It follows that, to carry the process one step further, the eigenvalues of the natural rotation matrix generated by
and its reciprocal 1
(in principal complex value), and likewise for the other eigenvalue
We may ask: what is the natural rotation matrix generated by
? By definition,
A similar computation shows that for the other eigenvalue the natural rotation matrix is
Thus each of these natural rotation matrices reduces to a nonzero constant multiple of the identity matrix, which of course only “rotates” a vector through an angle of 0 radians, as well as possibly altering its length. This motivates the
DEFINITION: For a nonzero eigenvalue of a matrix, if the associated natural rotation matrix reduces to a nonzero constant multiple of the 2X2 identity matrix, the eigenvalue will be said to be an irrotational eigenvalue.
In particular, the two eigenvalues just examined, having modulus 1, work out to be irrotational. Gathering all the observations made above, we have established the
THEOREM: For any nonzero eigenvalue
of a matrix, and in particular for any eigenvalue
of a diagonalizable and nonsingular (hence semi-invertible) matrix,
generates a natural
rotation matrix whose own eigenvalues
and
are irrotational.
With this result we may also readily prove the following:
THEOREM: Let A be a diagonalizable nonsingular (hence semi-invertible) matrix. Let
be
any eigenvalue of A, and let
the natural rotation matrix generated by
. The inverse
matrix
has an eigenvalue whose natural rotation matrix has the same (irrotational)
eigenvalues as
, but the two natural rotation matrices give opposite angles of rotation.
PROOF: It is well known that for any eigenvalue
of a nonsingular matrix A, the number
is an eigenvalue of
. Indeed if spectrum(A) =
then
Since the eigenvalues of
have been shown to
be
it follows that the
eigenvalues of
are
the same as for
And since the angle of rotation for
the angle of rotation for
REMARK: Since the eigenvalues of A and its inverse occur in mutually reciprocal pairs, in which each pair leads to two natural rotation matrices with opposite angles of rotation, the sum of the angles of rotation of all the natural rotation matrices generated by all the eigenvalues of A and its inverse taken together is 0.